Tampere University

Co-funded by the Erasmus+ Programme of the European Union

Power Systems stability, transmission, compensation

Tommi Reinikka

Outline

- 18.3
 - Basics of power systems analysis
 - Power transmission and compensation
- 19.3
 - Effect of power electronics to power system dynamics
 - Power grid from the POV of the grid-connected inverter

Power systems

- Power grid is a complex interconnected system
- Transmission lines are often have radial connections
 - More robust performance under faults and transients
 - Difficult to analyze (Newton-Raphson)
- Distribution lines are almost always connected point-to-point
 - Easy to analyze and control
 - Can be connected as circle, however only one of the lines are connected at a time

Stability for Power Grid

- Definition of stability:
 - Ability of the system to remain in the steady-state value in normal use and the capability to reach a new acceptable steady-state after a disturbance
- Frequency is the same in the whole power grid
 - Synchronous generators in power generation
 - Balance of power generation and consumption
 - Control of the generators can remove small frequency deviations
- Sufficient voltage levels for power transfer

Per Unit values - Example

- Allows modeling transformers without considering voltage ratio between different sides
 - Absolute impedance values seen from different sides of the transformer are different
- All the components are changed into equivalent components
 - Equivalent impedance or admittance values
 - The whole system has the same nominal power
 - Nominal power often set to 100 MVA or determined by the largest generator

$$\frac{\text{Nominal values}}{S_{\text{base}} = 1 \text{ p.u.}}$$

$$V_{\text{base}} = 1 \text{ p.u.}$$

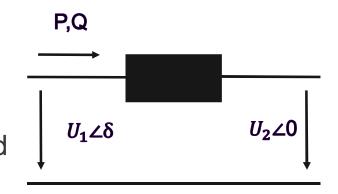
$$I_{base} = \frac{S_{base}}{V_{base} * \sqrt{3}} = 1 \text{ p.u.}$$

$$Z_{base} = \frac{V_{base}^2}{S_{base}} = 1 \text{ p.u.}$$

$$Z_{base} = R + jX$$

Per Unit values - Example

- Used for simplifying the equations
 - Calculation by hand is much easier
 - Manufacturers state nominal impedances as p.u, values compared to nominal power and voltage
 - Similar equipment of different sizes can be compared ie. Relative reactance of generators
 - Simplifying the problem and understanding the math problem becomes easier
 - Most programs use p.u. values


Nominal values

$$S_{\text{base}} = 1 \text{ p.u.}$$

 $V_{\text{base}} = 1 \text{ p.u.}$
 $I_{base} = \frac{S_{base}}{V_{base} * \sqrt{3}} = 1 \text{ p.u.}$
 $Z_{base} = \frac{V_{base}^2}{S_{base}} = 1 \text{ p.u.}$
 $Z_{base} = R + jX$

• Power flow equations in a simplified grid

•
$$P = \frac{U_1 U_2}{X} sin\delta$$

• $Q = \frac{U_1^2}{X} - \frac{U_1 U_2}{X} cos\delta$

- If the receiving end voltage U₂ is considered constant, the active and reactive power flows depend on
 - $\bullet \mbox{Phase}$ angle difference δ
 - The voltage at node U_1

• Active and reactive power flow changes depending on voltage amplitude U_1 and angle δ

$$\begin{split} \bullet \Delta P &= \frac{\partial P}{\partial \delta} d\delta + \frac{\partial P}{\partial U_1} dU_1 = \frac{U_1 U_2}{X} \cos \delta * d\delta + \frac{U_2}{X} \sin \delta * dU_1 \\ \bullet \Delta Q &= \frac{\partial Q}{\partial \delta} d\delta + \frac{\partial Q}{\partial U_1} dU_1 = \frac{U_1 U_2}{X} \sin \delta * d\delta + \frac{2U_1 - U_2}{X} \cos \delta * dU_1 \end{split}$$

- Change in power when
 - The angle difference changes but voltage is constant?
 - The voltage changes but angle difference is constant?

- Voltage difference determines the reactive power flow
- Change in power when the phase angle δ changes and voltage U_1 is constant

•
$$\frac{\Delta Q}{\Delta P} = \frac{\frac{\partial Q}{\partial \delta}}{\frac{\partial P}{\partial \delta}} = \tan \delta, U_1 = \text{constant}$$

•The change in reactive power Q is small when angle δ is small

•
$$\delta = 5^{\circ} \rightarrow \frac{\Delta Q}{\Delta P} = 0.09, \ \delta = 30^{\circ} \rightarrow \frac{\Delta Q}{\Delta P} = 0.6, \ \delta = 60^{\circ} \rightarrow \frac{\Delta Q}{\Delta P} = 1.7$$

- Angle difference determines the active power transfer
- Change in power when the voltage U_1 changes and the phase angle δ is constant

•
$$\frac{\Delta P}{\Delta Q} = \frac{\frac{\delta P}{\partial U_1}}{\frac{\partial Q}{\partial U_1}} = \frac{\sin \delta}{\frac{2U_1}{U_2} - \cos \delta}$$
, $\delta = \text{constant}$

•The change in active power is small compared to reactive power

•
$$\delta = 5^{\circ} \rightarrow \frac{\Delta P}{\Delta Q} = 0.09$$

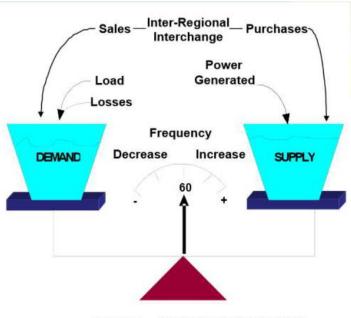
•Increases rapidly if angle δ is larger

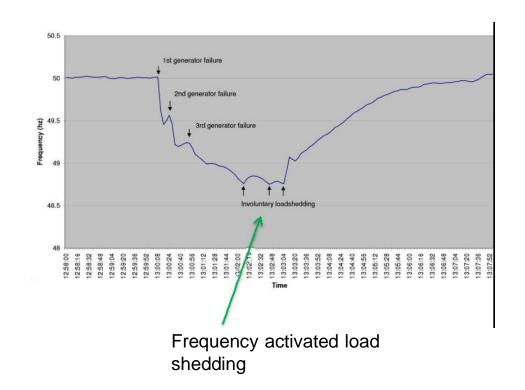
Power grid load flow – Stability limits

- AC transmission systems capability to transmit power is limited by the following
 - Angular stability (θ1- θ2)<30°)
 - Voltage magnitude (0.95 p.u. <V1, V2<1.05 p.u.)
 - Thermal limits (current flow limits)
 - Transient stability
 - Dynamic stability
- The limits define the maximum electrical power that can be transmitted without risking damage to transmission line and equipment

Grid Power Balance

- Active power transfer is determined by phase angle difference
 - Frequency is a global variable in the power grid and it is same in the whole synchronized network
 - Easy to transfer long distances
- Balance of power generation and load consumption
 - Active power changes can be seen as variance of the grid frequency
 - Reactive power changes can be seen as variance of the node voltage




Figure 3a — Generation / Demand Balance

Frequency balance

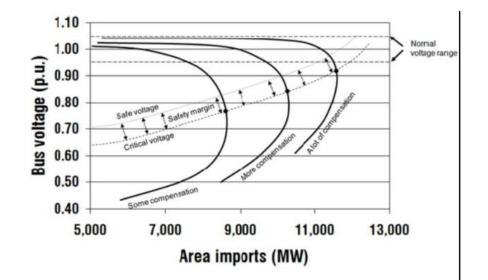
- Frequency is usually not allowed to vary too much
 - Controlled through the active power generation
 - Droop-control of the generators
 - Rotating mass in synchronous generators aids in damping fluctuation
- Large changes in frequency can cause devices to disconnect or damage the equipment
 - Certain types of generators must be disconnected if frequency drops to 47 Hz in 50 Hz power grid
 - Grid frequency or its multiples are the same as the resonating frequency of the rotor blades

Frequency stability – Design requirements

- Power grid designed with capability of N-1
 - Can operate normally even if the largest possible single fault occurs
- Frequency nadir determined by the inertia of the power grid
 - Traditionally determined by the rotating mass present in the generators
 - Power electronics reducing the inertia
 - Larger frequency fluctuation is possible
 - New requirements for power electronic devices

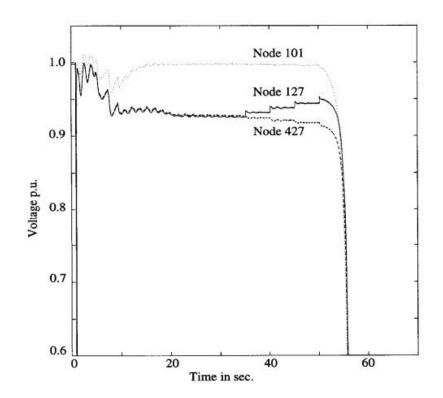
Example – Change of frequency during fault

- Change in frequency when a power grid with apparent power S_{nom} = 100 MWA with inertia H=5kWs/kVA is affected by load of 50 MW dropping. The turbine reacts in 0.4 seconds
- What is the frequency difference
- $\Delta P_D = -50$ MW, $t_{delay} = 0.4$ s
- The accelerating energy: $W = \Delta P_d * t = 50\ 000\ kW * 0.4s = 20000 kWs$
- Frequency change $f = f_0 \sqrt{\frac{W_{kin}}{W_{kin,0}}} = 50 \text{ Hz} * \sqrt{\frac{5*10^5 + 20000}{5*10^5}} = 51 \text{ Hz}$
- The inertia stops large changes from happening to grid frequency
 - For comparison power grid in Northern Europe has inertia sufficient for at least 8000 MWA/Hz speed droop

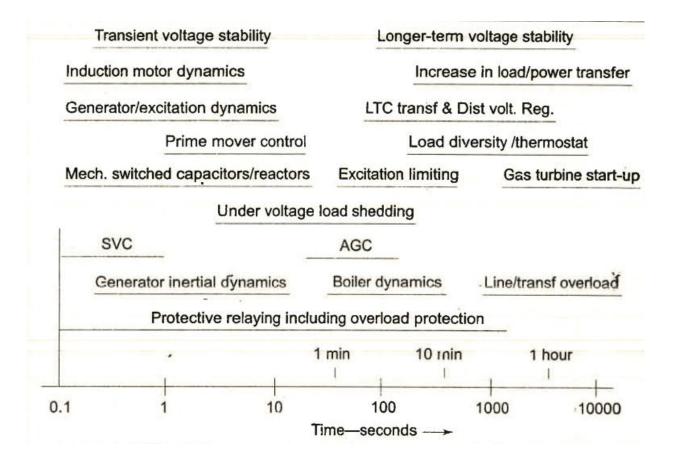


Voltage stability

6.9.2019 | 17


Power grid – Voltage stability

- Voltage stability is an issue when transferring large amounts of power through limited power network
 - Power transmission capability is traditionally limited by rotor angle stability and thermal loading capabilities
 - Voltage stability means the ability to maintain acceptable voltages at all buses in the system under normal conditions and after being subjected to disturbance


Power grid – Voltage stability

- Voltage instability can occur in a time frame of a second (Transient voltage stability) or take up to tens of minutes (Long-term voltage stability)
- The power system should be secure enough to be able remain stable after ny reasonable adverse system change such as load increases

6.9.2019 | 19

Voltage stability causes

6.9.2019 | 20

Voltage collapse

- Voltage collapse is a process by which the sequence of events lead to unacceptable voltage profile in significant part of the power system
- The voltage collapse can be characterized as follows
 - The initiating event may be due to variety of reasons:
 - Small gradual changes such as increase in system load
 - Sudden large disturbances such as loss of a generator or a heavily loaded line
- Core problem is the inability of the system to meet its reactive demands
 - Transport of reactive power is difficult and can additional need for reactive power support may cause eventually lead to voltage collapse
- Usually manifests as slow decay of voltage
 - Accumulative process involving interaction of many devices, controls and protective systems

Voltage collapse - causes

- Long transmission lines
 - The power systems with long lines without voltage control at the receiving end create voltage problems during light or heavy load conditions
- Radial transmission lines
 - Any loss of line causes and increase in system reactance
- Shortage of local reactive power
 - There may occur a disorganized combination of outage and maintenance schedule that may cause localized reactive power shortages leading to voltage control problem

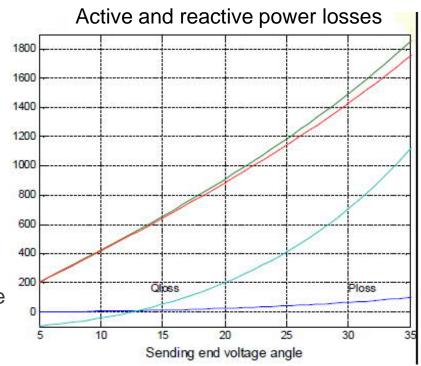
Improving voltage stability

- Voltage stability can be improved by adopting the following means
 - Enhancing the local reactive power support
 - Reactive power injection
 - Compensating the power line reactance
 - Additional power lines
 - Enhancing excitation of generator
 - Terminal voltage increase
 - HVDC to connect different regional grids
 - Strategic load shedding

Power grid – Voltage control

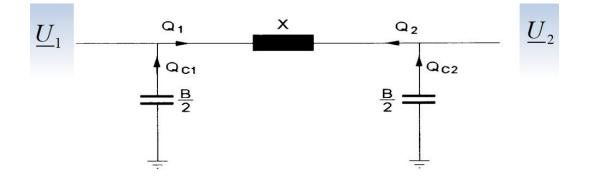
- Goals:
 - Avoid over- and under voltages
 - Quality of the delivered electric power
 - Minimazing the losses
- Insufficient reactive power support from generators can and has lead to voltage instability
- Sufficient controllable compensation capacity
 - Reactive power is not efficient to transfer due to large voltage differences → Must be generated locally

Finnish transmission voltage levels			
V	oltage(kV)	Normal	Fault
	400	395 - 420	360 - 420
	220	215 - 245	210 - 245
	110	105 - 123	100 - 123


Power transmission

- For a network with
 - Active power P and reactive power Q
 - Transmission line resistance R and reactance X
 - Both end node voltages are U
- Power grid transmission losses
 - Active power losses = $3I^2R$
 - Reactive power losses = $3I^2X$

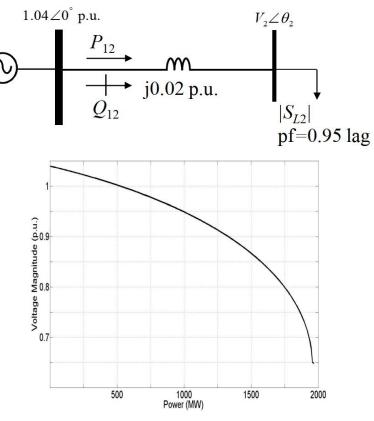
•
$$I^2 = I * I^* = \frac{S^*}{\sqrt{3}*U^*} * \frac{S}{\sqrt{3}U} = \frac{P - jQ}{\sqrt{3}*U^*} * \frac{P + jQ}{\sqrt{3}*U} = \frac{P^2 + Q^2}{3U^2}$$


Which means losses are relative to both active and reactive power

•
$$P_{loss} = 3I^2 R = \frac{P^2 + Q^2}{U^2} R$$
 and $Q_{loss} = 3I^2 X = \frac{P^2 + Q^2}{U^2} X$

Power lines – Reactive Power

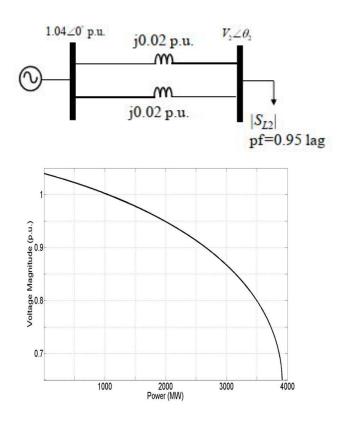
- Power lines generate some reactive power
 - Caused by stray capacitances
- Increased power transfer increases the consumed reactive power due to inductive nature of power lines
- Natural power of the power line
 - Power line has equal reactive power generation and consumption



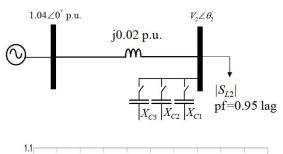
Grid compensation

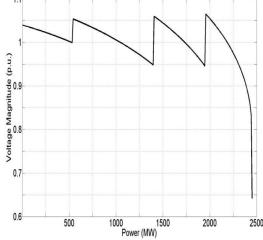
6.9.2019 | 27

Compensation methods


- The power transmission over long distances is limited by the reactive power
- Voltage loss increases when active power increases
 - High-voltage power lines have much larger reactive components than resistive X>>R
 - Higher current increase reactive power consumption of the power line
- The capability of the power line to transfer active power can be increased by compensating the line reactance

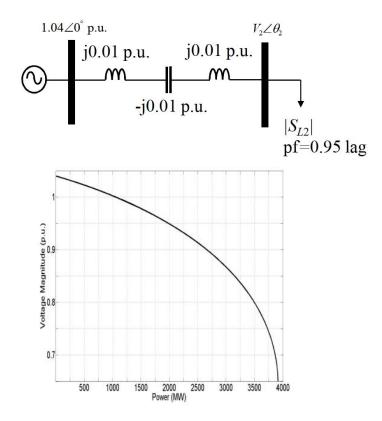
6.9.2019 | 28


Conventional system reinforcement solution

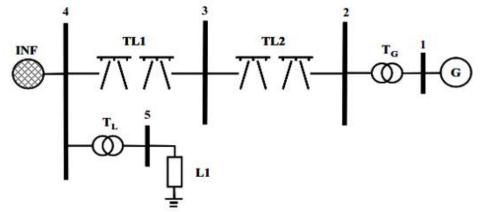

- Building an additional identical transmission line parallel
 - Effectively halves the circuit reactance
 - Easy solution
 - Expensive
- Second line doubles the transmission capacity
 - •The line impedance must be equal
 - Same type of conductors must be used

Shunt Compensation - Parallel Capacitor Bank

- A bank of switched capacitors installed at the load side with following values Xc1 = 0.42 p.u. Xc2=0.24 p.u. Xc3=0.32p.u.
- Increases the voltage at bus 2 by generating reactive power
- Requires switching of the capacitors depending on the load
 - High compensation with low load increases voltages
- Stabilizes voltages

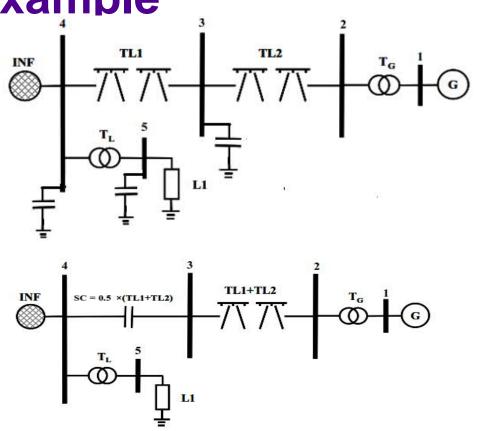


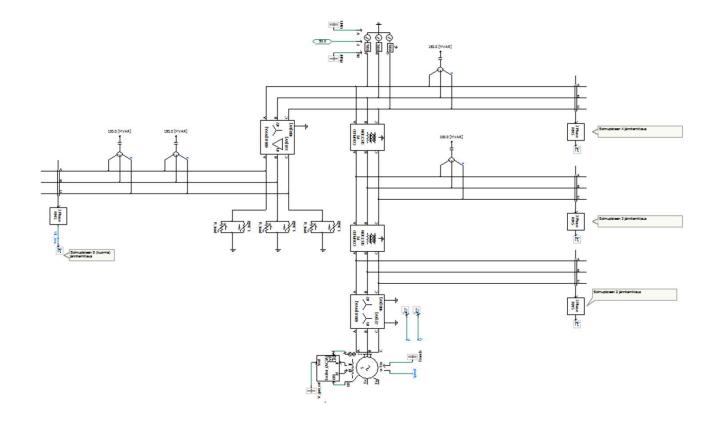
Series Compensation - Series capacitor bank


• A bank of series capacitors are installed half-way the transmission line to reduce electrical length of the line

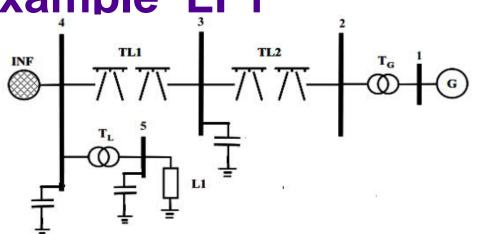
• Permanent connection

- Increases power transmission by halving the length of the line
 - 50% series compensation
- Compensation depends on the load as the reactive power is relates to current squared
- Series resonance with inductance can cause subsynchronous harmonics

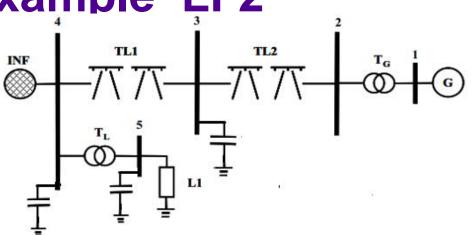

- Example cases
 - LF1 Maximum load, heavily loaded grid
 - LF2 50 % load, normally loaded grid


Case 1 - LF 1		Case 2 - LF2			
L1	G	Uinf	L1	G	Uinf
Un=110kV	P = 550 MW	U = 390	Un=110 kV	500 MW	U = 415 kV
Pn=600MW	Q according	kV	Pn=300 MW	Q according	
Qn=200 MVAr	to power flow analysis		Qn=200 MVAr	to power flow analysis	

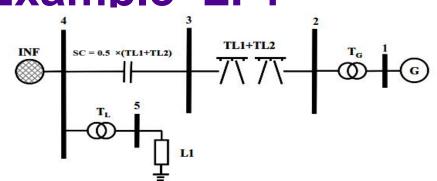
- Goal: Keep voltages within acceptable values (0.95 p.u. 1.05 p.u.)
- Shunt compensation
- Series compensation


No compensation				
	LF 1	LF 2		
θ _{inf} - θ _{gen}	-47.9 deg	-39 deg		
U2	0.99 p.u.	1.01 p.u.		
U3	0.90 p.u.	0.98 p.u		
U4	0.86 p.u.	0.98 p.u.		
Uload	0.82 p.u.	0.95 p.u.		

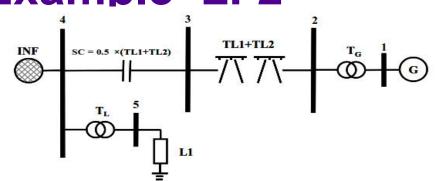
Shunt compensation – Simulation model



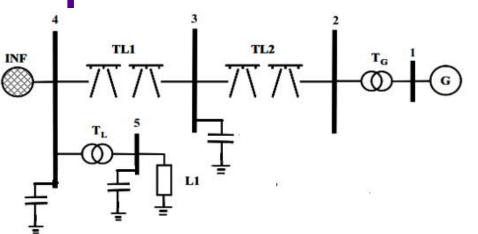
- Goal: Keep voltages within acceptable values (0.95 p.u. - 1.05 p.u.)
- Shunt compensation in situation LF1
- Added compensation
 - Node 5: 250 MVAr
 - Node 4: 150 MVAr
 - Node 3: 100 MVAR


No compensation		Compensation
$\boldsymbol{\theta}_{inf}$ - $\boldsymbol{\theta}_{gen}$	-47.9 deg	-34.4 deg
U2	0.99 p.u.	1.01 p.u.
U3	0.90 p.u.	1.01 p.u.
U4	0.86 p.u.	0.996 p.u.
Uload	0.82 p.u.	0.998 p.u.

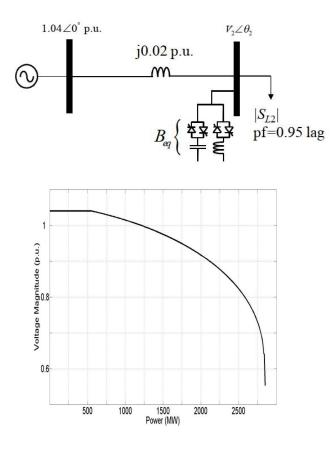
- Goal: Keep voltages within acceptable values (0.95 p.u. 1.05 p.u.)
- Shunt compensation in situation LF2
- Added compensation
 - Node 5: 250 MVAr
 - Node 4: 150 MVAr
 - Node 3: 100 MVAR
- Overvoltage due to compensation
 - Compensation related to voltage not load
 - Must be able to switched off


No compensation		Compensation
$\boldsymbol{\theta}_{inf}$ - $\boldsymbol{\theta}_{gen}$	-39 deg	-37 deg
U2	1.01 p.u.	1.02 p.u.
U3	0.98 p.u.	1.11 p.u.
U4	0.98 p.u.	1.14 p.u.
Uload	0.95 p.u.	1.18 p.u.

- Goal: Keep voltages within acceptable values (0.95 p.u. - 1.05 p.u.)
- Series compensation in situation LF1
- Added compensation 55% in series

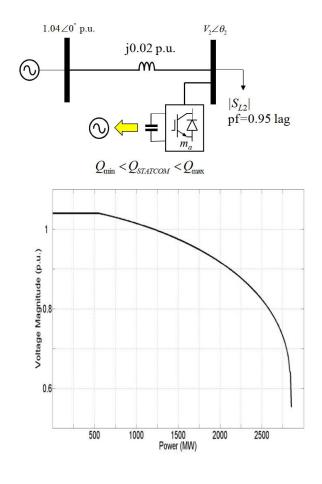

No compensation		Compensation
θ_{inf} - θ_{gen}	-47 deg	-23 deg
U2	0.99 p.u.	0.99 p.u.
U3	0.90 p.u.	0.92 p.u.
U4	0.86 p.u.	0.93 p.u.
Uload	0.82 p.u.	0.87 p.u.

- Goal: Keep voltages within acceptable values (0.95 p.u. 1.05 p.u.)
- Series compensation in situation LF2
- Added compensation 55% in series

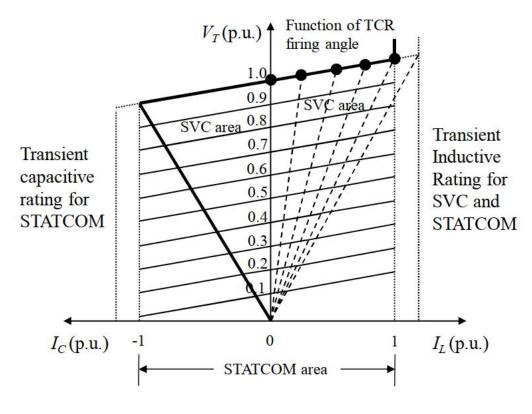

No compensation		Compensation
$\boldsymbol{\theta}_{inf}$ - $\boldsymbol{\theta}_{gen}$	-39 deg	-23 deg
U2	1.01 p.u.	1.00 p.u.
U3	0.98 p.u.	0.97 p.u.
U4	0.98 p.u.	0.97 p.u.
Uload	0.95 p.u.	0.95 p.u.

- Chosen compensation should be shunt capacitors with ability to switch the capacitor bank on/off
- Shunt compensation
 - Works well under high loading
 - Overvoltage may occur when low load
- Series compensation
 - Decreases the phase angle difference significantly
 - Series resonances with power grid may cause problems

Shunt Compensation – SVC


- Static Var Compensator SVC
- Is composed of a capacitor and an inductor connected through thryristors
- Injected reactive power can be controlled
 - Has capability for flat voltage profile up to rated capacity
- Transmission system dynamic margin increases with the use of an SVC
 - However, reactive power support is impaired by low voltages
 - $Q_{SVC} = B_{eq}V_2^2$

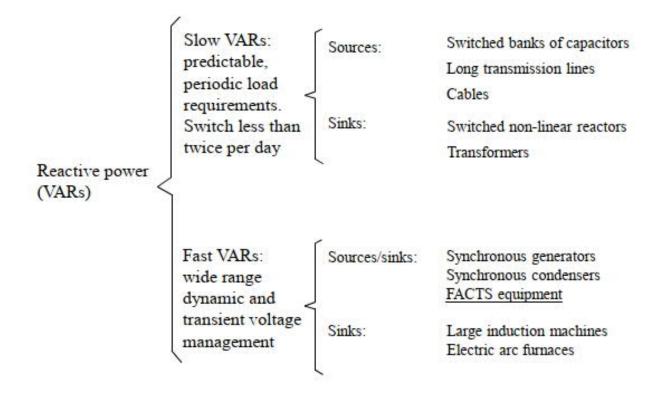
6.9.2019 | 40


Shunt Compensation – Statcom

- Alternative newer, more sophisticated solution for SVC
- Behaves more like a synchronous generator
- Capacitor bank connected to the DC-side of an inverter
 - •Can control the reactive power injection without being impaired by low voltage

Statcom – SVC comparison

 Statcom injection current is not limited by the power grid voltage



6.9.2019 | 42

Needs for Dynamic Reactive Power

	1	Improve bulk power system reliability	To provide dynamic voltage regulation to prevent voltage collapse phenomena leading to large area black-outs
		Reduce costs of operating Grid reliability	Improve economic dispatch and reduce transmission power losses
Industry needs for		Mitigate grid disturbances	Generated by rapidly fluctuating non-linear loads; switching events; large induction motor starting
dynamic reactive power	ve	Enable greater throughput to maximize grid utilization	Power transmission to be limited by thermal limits instead of stability limits
		Enable export of excess low-cost energy and capacity	Power flow regulation in key transmission corridors
		Improve inter-grid power exchange	Cancellation of circulating power flows

Optimum Mix of Reactive Power Sources/Sinks

6.9.2019 | 44

Overall

- The power generation and consumption must be equal at all times
- Frequency is a global variable affected by active power
 - Inertia damps the frequency fluctuation in the power grid
 - Stored energy in the rotating mass of the generators
 - Droop-control of the generators
- Voltage is local variable affected by reactive power
 - Reactive power is not economical to transfer and must be generated locally
 - Grid compensation
 - Large generators are usually restricted to feeding active power to the grid in normal operation
 - Ability to support grid voltage during faults

• Increase in solar and wind power are changing the dynamics of the power grid

• New requirements for the power electronics connecting them to the grid