

Using Critical Thinking to Imagine Sustainable Energy Futures

Prof. Dr. Olav Hohmeyer Europa-Universität Flensburg

Yangon, Myanmar, September 3rd, 2019

Prof. Dr. Olav Hohmeyer

Structure of the presentation

- Futures thinking and energy a special case
- Energy futures: sustainable or not?
- Sustainable energy target scenarios versus a business-as usual future
- Which sustainable energy target scenario should we choose?
- The use of backcasting from to find transition pathways
- Guiding transition pathways by policy
- Take home messages

FUTURES THINKING AND ENERGY A SPECIAL CASE

Prof. Dr. Olav Hohmeyer

Futures Thinking and Energy The possibility cone

The typical cone of possible futures

Futures Thinking and Energy – A Special Case

Possible energy futures with growing demand:

- More fossil fuels
- More nuclear energy
- Fossil fuels with CCS

(Carbon Capture and

Storage)

- More renewable energy
- Energy savings / less use of energy
- Combinations of the above

Futures Thinking and Energy – A Special Case

Not every possible energy future is sustainable!

- Fossil fuels cause climate change and pollution
- Nuclear energy causes long term waste problems and catastrophic accidents
- Bioenergy may compete with food production
- Hydropower may have severe environmental

ENERGY FUTURES SUSTAINABLE OR NOT?

Prof. Dr. Olav Hohmeyer

What is sustainable development?

Definition of the Brundtland Commission (WCED 1987):

'A development satisfying the needs of the present generation without impairing the needs of future generations.'

- Don't exceed the assimilative capacity of the ecosystems
- Don't exceed the regenerative capacity of the renewable resources
- Keep the functional stock of resource capital constant

The world economy as subsystem of the global ecosystem

Prof. Dr. Olav Hohmeyer

Where do the management rules apply?

ZNES

Much more solar energy than needed

ZNES

ZENTRUM FÜR NACHHALTIGE ENERGIESYSTEME

CHULE UNIVERSITÄT FLENSBUR

Massive temperature rise because of human GHG emissions

By today + 1.0° warming compared to preindustrial levels

Additional warming of 0.2° per decade at present emission rates

Prof. Dr. Olav Hohmeyer

Long temperature rise of 8 degrees by 2300 with high fossil fuel use

Source: IPCC 2013, p.17

Components of climate change (radiative forcing)

Prof. Dr. Olav Hohmeyer

IPCC emission pathways to stay within the 1.5° target agreed at COP 23 in Paris 2018

Global CO₂ emissions need to decline to net zero by 2040 to 2055!

The share of CO₂ from fossil fuels The example of Germany (2000)

97% of all CO₂ emissions from energy conversion processes!

Fossil fuels represent 85% of the problem

Share of GHGs in the FRG in 2000:

1%

0.25%

- CO₂: 87%
- CH4: 6%
- N2O: 6%
- HFCS/PFCS:
- SF6:

The future use of fossil fuels is not sustainable!

Source: BMU 2003, S. 32 und

UBA 2002, S. 31

Nuclear Energy

- Substantial risk of large scale accidents (e.g. Harrisburg, Chernobyl, Fukushima)
- Long term safety of nuclear waste deposits is still unclear
- Massive global use of nuclear energy carries massive risk of nuclear weapons technology proliferation
- In many industrialized societies nuclear energy is faced with massive problems of public acceptance

Nuclear energy is not a sustainable energy option

Not every energy future is sustainable

Only sustainable energy futures are acceptable!

Source: https://thevoroscope.com/2017/02/24/the-futures-cone-use-and-history/

Components of non sustainable energy futures:

- Coal, oil, gas
- Nuclear energy

Components of partially sustainable energy futures:

- Hydropower
- Bioenergy
- Components of fully sustainable energy future:
- Solar, wind, geothermal and ocean energy
- Energy savings, energy efficiency

Which sustainable energy future should we pick?

Which sustainable energy futures/scenarios can we design for a country?

Source: https://thevoroscope.com/2017/02/24/the-futurescone-use-and-history/

How much of which component can we envisage?

- energy savings
- energy efficiency

- geothermal
- ocean energy
- Hydropower
 - Bioenergy

SUSTAINABLE TARGET SCENARIOS VERSUS BUSINESS AS USUAL

What do we need to look at for sustainable future energy scenarios?

- The likely future energy demand
- The factors driving the future energy demand
 - Economic growth
 - Population growth
 - Energy efficiency improvements
- The possible contributions of different renewable energy sources
- Storage possibilities of a country

- Economic growth
 - In a first approximation energy consumption will grow at a similar path as the economic production (GDP)
- Population growth
 - Strong population growth can lead to even higher growth rates of the energy demand
- Energy efficiency improvements
 - Energy efficiency can lead to a decoupling of energy and economic growth

Possible future energy demand Economic growth as the main driver

Prof. Dr. Olav Hohmeyer

Prof. Dr. Olav Hohmeyer

Possible future energy demand CO₂ emissions 1:1

Prof. Dr. Olav Hohmeyer

Possible future energy demand with autonomous improvements in energy efficiency

Prof. Dr. Olav Hohmeyer

Energy efficiency alone can't do the trick

Prof. Dr. Olav Hohmeyer

WHICH SUSTAINABLE TARGET SCENARIO SHOULD WE CHOOSE?

Prof. Dr. Olav Hohmeyer

How to design sustainable energy scenarios for a country

Prof. Dr. Olav Hohmeyer Europa-Universität Flensburg

Yangon, Myanmar, September 4th, 2019

Prof. Dr. Olav Hohmeyer

HOW TO BUILD A SUSTAINABLE TARGET SCENARIO?

Prof. Dr. Olav Hohmeyer

A CLOSER LOOK AT ENERGY DEMAND

Prof. Dr. Olav Hohmeyer

The structure of energy demand The example of German

Mechanical energy Stationary Mobile Heat High Temperature Low Temperature Cooling Lighting Information Technology

The structure of energy demand by energy service

- Mechanical energy
 - Stationary
 - Mobile (Transport)
- Heat
 - High Temperature
 - Low Temperature
- Cooling
- Lighting
- Information Technology

The structure of energy demand as flow chart

Sectors of final demand

- Industry
- Transport
- Households
- Service sector

The structure of energy demand as flow chart

Energy Flow Chart for the Federal Republic of Germany in 2017 Energy Unit Petajoule (PJ)*

Prof. Dr. Olav Hohmeyer

Projected future energy demand of Myanmar until 2050

A sevenfold increase in electricity demand will need to be met by 2050

Source: IES and MKE 2017

Prof. Dr. Olav Hohmeyer

A CLOSER LOOK AT RENEWABLE ENERGY SOURCES

Prof. Dr. Olav Hohmeyer

Analyse the national renewable energy potentials

- Size (GW) and quality (cost per kWh) of the renewable resources of the country?
 - Solar energy (PV and solar thermal)
 - Wind energy (onshore and offshore)
 - Geothermal energy (deep and shallow)
 - Ocean energy (wave, tidal, ocean currents)
 - Hydropower
 - Bioenergy (waste and energy crops)

• In the first round of scenario building rough estimates will suffice.

A CLOSER LOOK STORAGE

Prof. Dr. Olav Hohmeyer

Analyse the national storage potentials

- Size (GW) and quality (cost per kWh) of the storage options of the country?
 - Pump hydro storage
 - Compressed air storage
 - Power to gas to power storage
 - Battery storage

CHOOSING THE TARGET SCENARIO

Prof. Dr. Olav Hohmeyer

Simulate possible target scenarios

Prof. Dr. Olav Hohmeyer

Compare results and select possible target scenarios (Barbados 2017)

Scenario											
		Scenario	LCOE								
	No.	Name									
	(11	100% RE / Wind / PV / Solid waste combustion	0.3883								
	7	100% RE Wind and PV plus storage	0.3999								
	13	100% RE / Wind / PV / King Grass / WTE combustion	0.4004								
	6	100% RE Wind and storage alone	0.4013								
	17	100% RE / Wind / PV / King Grass / Bagasse / WTE combustion	0.4128								
	14	100% RE / Wind / PV / Bagasse / WTE combustion	0.4143								
	12	100% RE / Wind / PV / King Grass / WTE gasification	0.4209								
	8	100% RE / Wind / PV / King Grass	0.4212								
	9	100% RE / Wind / PV / Bagasse	0.4233								
	10	100% RE / Wind / PV / WTE gasification	0.4356								
	18	100% RE / Wind / PV / King Grass / Bagasse / WTE gasification /WTE combustion	0.4361								
	13a	100% RE / Wind / PV / King Grass / WTE combustion	0.4386								
	1	New diesel only (base line)	0.4495								
	16	100% RE / Wind / PV / King Grass / Bagasse / WTE gasification	0.4584								
	15	100% RE / Wind / PV / Bagasse / WTE gasification	0.4614								
	2	Bagasse and river tamarind only	0.4810								
	3	King grass gasification only	0.4886								
	5	100% RE PV and storage alone	0.5100								
	4	Waste to energy gasification only	0.5126								

A multi-criteria decision process

Source: Hohmeyer 2017, p.17 and 19

Prof. Dr. Olav Hohmeyer

USE OF BACKCASTING TO FIND TRANSITION PATHWAYS

Prof. Dr. Olav Hohmeyer

Moving from today to sustainable future scenarios and backcasting the way to the future

Source: https://www.pinterest.de/pin/49757745 8821892421/

Figure 4.9: Construction of a scenario with its pathway in a sequence of development rounds

Source: Maas 2014, p. 129

Example of a simple transition pathways for a selected target scenario (Barbados), Part 1

							Instal	ed capac	tiies an	d annua	l genei	ration		
S	Scenario (Wind year 2011	Year	Annual power demand	LCOE	Wi	nd	Ρ	v	King Grass		Bag and tam coml	gasse I river harind bustion	Soli comb	d wate oustion
No ·	Name			BBD/ kWh	MW	GWh/ a	MW	GWh/ a	MW	GWh/ a	MW	GWh/ a	MW	GWh/a
		2015	950		0		10	19					0	
	100% RE / Wind / PV / WTE	2020	1050	0.3664	25	114	55	113					5	34
11		2025	1150	0.3002	105	481	125	258					11	74
	combustion	2030	1250	0.3123	185	847	195	403					11	74
		2035	1350	0.3883	265	1213	265	547					11	74

Source: Hohmeyer 2017, p.22

Prof. Dr. Olav Hohmeyer

Example of a simple transition pathways for a selected target scenario (Barbados), Part 2

Transition pathway Installed capacities and annual generation Stora Scenario / Wind year 2011 Total Annual Diesel/ ge Storage Storage Year power LCOE Share of RE overproduct **Biodiesel** volu generation pumping demand ion me No. Name **BBD**/ MW GWh/ **MWh** MW GWh/ MW GWh/ % GWh/a kWh а а а 2015 950 239 950 2020 1050 0.3664 140.9 789 24.9 % 0 100% RE / Wind / PV / WTE 2025 1150 0.3002 148.8 354 3000 150.5 60 90 69.2 % 17 80 11 combustion 2030 1250 0.3123 162.2 118 5000 186.3 176 220.7 202 90.6 % 192 2035 0.3883 1350 166.7 50 5000 196.8 205 307 238 96.3 % 400 Target scenario 11

Source: Hohmeyer 2017, p.23

Prof. Dr. Olav Hohmeyer

Backcasting simple transition pathways for four selected target scenarios (Barbados)

							Instal	lled capa	cities an	id annua	l gene	ration											Installed	l capaciti	es and a	nnual ge	neration			
Scenario / Wind year 2011		d Year	Annual power demand	LCOE	Wi	/ind PV		٩V	King Grass		Bagasse and river tamarind combustion		Solid wate combustion		:	Scenario / Wind year 2011	Year	Annual power demand	LCOE	Diesel/ Biodiesel		Stora ge volu me	a Storage u generatio		Stor pum	rage iping	Share of RE	Total overproduct ion		
1	No Name			BBD/ kWh	MW	GWh/ a	MW	GWh/ a	MW	GWh/ a	мw	GWh/ a	MW	GWh/a	No.	Name			BBD/ kWh	MW	GWh/ a	MWh	MW	GWh/ a	MW	GWh/ a	%	GWh/a		
-																	2015	950		239	950									
		2015	950		0		10	19					0				2020	1050	0.3664	140.9	789						24.9 %	0		
	100% RE	2020	1050	0.3664	25	114	55	113					5	34	11	100% RE / Wind / PV / WTE combustion	2025	1150	0.3002	148.8	354	3000	150.5	60	90	80	69.2 %	17		
(11 Wind / PV WTE	2025	1150	0.3002	105	481	125	258					11	74			2030	1250	0.3123	162.2	118	5000	186.3	176	220.7	202	90.6 %	192		
	combustio	2030	1250	0.3123	185	847	195	403					11	74			2035	1350	0.3883	166.7	50	5000	196.8	205	307	238	96.3 %	400		
		2035	1350	0.3883	265	1213	265	547					11	74			2015	950		230	950	0	0	0	0	0	0.0 %	0		
		2015	950		0	0	10	19	0	0			0	0		100% RE / Wind / P\/ / King	2013	4050	0.0000	233	300	0	0	0	0	0	0.0 %	0		
	100% RE	2020	1050	0.3696	20	92	65	134	2	5			5	34			2020	1050	0.3696	140.2	765						25.2 %	0		
(Wind / PV 13 King Grass	2025	1150	0.3253	90	412	120	248	10	30			11	74	13	Grass / WTE combustion	2025	1150	0.3253	148	422						63.3 %	36		
	combustio	2030	1250	0.3161	160	733	175	361	18	75			11	74			2030	1250	0.3161	155.6	164.4	5000	178	142	162.8	163	86.8 %	157.4		
		2035	1350	0.4004	232	1062	232	479	26	120			11	74			2035	1350	0.4004	144.8	50	5000	172.9	163	253.4	190	96.3 %	435		
		2015	950		0		10	19	0	0			0				2015	950		239	950						0.0 %			
	1000/ DE	2020	1050	0.3749	20	92	50	103	2	5			5	34		100% RE / Wind / PV / King Grass / WTE combustion	2020	1050	0.3749	140.2	816						22.3 %	0		
1	Wind / PV King Grass	2025	1150	0.3354	80	366	100	206	14	45			11	74	13 a		2025	1150	0.3354	140.5	469						59.2 %	10		
	WTE combustio	י 2030	1250	0.3451	140	641	150	310	27	150			11	74			2030	1250	0.3451	135.3	168	5000	156	97	131.5	110	86.6 %	93		
		2035	1350	0.4331	200	916	200	413	40	300			11	74			2035	1350	0.4331	131.6	50	5000	156.8	129	199.8	151	96.3 %	403		
	100% RE /	2015	950		0	0	10	19			0	0	0	0		100% RE / Wind / PV /	2015	950		239	950	0	0	0	0	0	0.0 %	0		
	Wind / PV / Bagasse / W combustion	7E 2020	1050	0.3807	20	92	65	134			25	169	5	34		Bagasse / WTE combustion	2020	1050	0.3807	121.7	621						40.9 %	0		
	14	2025	1150	0.3452	85	389	120	248			25	169	11	74	14		2025	1150	0.3452	129.9	286	5000	138.4	56	85.3	75	75.1 %	16		
1		2030	1250	0.3609	170	778	175	361			25	169	11	74			2030	1250	0.3609	139.4	133	5000	165	157	181.4	181	89.4 %	265		
		2035	1350	0.4143	219	1003	219	452			25	169	11	74			2035	1350	0 4143	151.9	50	5000	180.6	176	248.3	205	96.3 %	308		
																	2000	1000	0.4140	101.5		0000	100.0		240.0	200		- 390		

Source: Hohmeyer 2017, p.22/23

Prof. Dr. Olav Hohmeyer

Different scenarios may need to build storage at different times

						Installed	I capaciti						
:	Scenario / Wind year 2011	Year	Annual power demand	LCOE	Die Biod	sel/ iesel	Stora ge volu me	Sto gener	rage ration	Stor	age ping	Share of RE	Total overproduct ion
No.	Name			BBD/ kWh	MW GWh/ a		MWh	MW GWh/ a		MW GWh/ a		%	GWh/a
		2015	950		239	950							
	100% RE / Wind / PV / WTE combustion	2020	1050	0.3664	140.9	789						24.9 %	0
11		2025	1150	0.3002	148.8	354	3000	150.5	60	90	80	69.2 %	17
		2030	1250	0.3123	162.2	118	5000	186.3	176	220.7	202	90.6 %	192
		2035	1350	0.3883	166.7	50	5000	196.8	205	307	238	96.3 %	400
		2015	950		239	950	0	0	0	0	0	0.0 %	0
		2020	1050	0.3696	140.2	785						25.2 %	0
13	100% RE / Wind / PV / King Grass / WTE combustion	2025	1150	0.3253	148	422						63.3 %	36
		2030	1250	0.3161	155.6	164.4	5000	178	142	162.8	163	86.8 %	157.4
		2035	1350	0.4004	144.8	50	5000	172.9	163	253.4	190	96.3 %	435
										\mathbf{k}	\mathcal{N}		

Source: Hohmeyer 2017, p.23

Prof. Dr. Olav Hohmeyer

GUIDING TRANSITION PATHWAYS BY POLICY

Prof. Dr. Olav Hohmeyer

Where to find information on national renewable energy potentials

- Size (GW) and quality (cost per kWh) of the renewable resources of the country?
 - Solar energy (PV and solar thermal)
 - Wind energy (onshore and offshore)
 - Geothermal energy (deep and shallow)
 - Ocean energy (wave, tidal, ocean currents)
 - Hydropower
 - Bioenergy (waste and energy crops)

Source: IRENA Global Atlas for Renewable Energy (3TIER Global Solar Dataset)

- Markets don't steer towards sustainable energy futures due to massive externalities (climate, health, environment), which are not included in market prices!
- Policy has to set the guardrails / framework for markets to steer towards sustainable energy futures

Guiding the transition: The policy framework

- Prohibit the use of non sustainable energy sources (phase out):
 - Phase out of nuclear energy by set target year in many countries after Fukushima
 - Phase out of coal in a number of countries to reach climate targets
- Mandate the use of sustainable energy sources (phase in)
 - Renewable energy quota (portfolio standards) in different countries
- Make non sustainable energy sources very expensive (taxes or emission charges)
 - CO₂ taxes in some countries
 - CO₂ emission rights in trading systems
- Make sustainable energy sources cheap (subsidies)
 - Feed-in tariffs
 - Investment subsidies

TAKE HOME MESSAGES

Prof. Dr. Olav Hohmeyer

- Energy futures need to fulfill sustainability criteria
- Energy is the main cause and solution of global warming
- Projecting past trends into the future will not lead to a sustainable energy future
- A sustainable energy future has three main components:
 - Energy efficiency to decrease demand
 - 100% renewable energy supply
 - Storage to allow time shift of electricity from wind and solar production to times of demand
- Every country will have its own sustainable energy future
- Policy needs to set the framework to guide the transition

How to design sustainable energy scenarios for a country

Prof. Dr. Olav Hohmeyer Europa-Universität Flensburg

Yangon, Myanmar, September 4th, 2019

Prof. Dr. Olav Hohmeyer

What do we need to look at for sustainable future energy scenarios?

- The likely future energy demand
- The factors driving the future energy demand
 - Economic growth
 - Population growth
 - Energy efficiency improvements
- The possible contributions of different renewable energy sources
- Storage possibilities of a country

A 100% renewable energy supply A chance for Myanmar?

Prof. Dr. Olav Hohmeyer Europa-Universität Flensburg

Langon, Myanmar, October 9th, 2017

Prof. Dr. Olav Hohmeyer

Results of a first 100% RE study on Myanmar

Prof. Dr. Olav Hohmeyer Europa-Universität Flensburg

Langon, Myanmar, October 9th, 2017

Prof. Dr. Olav Hohmeyer

Myanmar has very good wind and solar energy resources

Source: IES and MKE 2017

Prof. Dr. Olav Hohmeyer

Myanmar's hydropower resource is excellent and biomass can contribute substantially

Table 5Summary of Estimated Renewable Energy Potential (Compiled from Various
Sources and Analysis)

Myanmar	Potential (MW)	Source and comments						
Hydro (Large)	46,000	See Section 3.4						
Hydro (Small)	231	See Section 3.4						
Pump Storage	0	Lack of studies available						
Solar	26,962 MW	Renewable Energy Developments and Potential in the Greater Mekong Subregion (ADB, 2015)						
Wind Onshore	33,829	Renewable Energy Developments and Potential in the Greater Mekong Subregion (ADB, 2015)						
Wind Offshore	No information available	Lack of studies available						
Biomass	6,899	IES projections based on data from Renewable Energy Developments and Potential in the Greater Mekong Subregion (ADB, 2015)						
Biogas	4,741	IES projections based on data from Renewable Energy Developments and Potential in the Greater Mekong Subregion (ADB, 2015)						
Geothermal	400	See Section 3.7						
Ocean	1,150	Ocean renewable energy in Southeast Asia: A review (2014), based on 5kW/m wave potential, 2300km coastline, 10% efficiency						

Source: IES and MKE 2017

Prof. Dr. Olav Hohmeyer

The seasonality of solar, wind and hydropower fits very well together

Source: Consultant analysis

Source: IES and MKE 2017

Prof. Dr. Olav Hohmeyer

A sevenfold increase in electricity demand will need to be met by 2050

Source: IES and MKE 2017

Prof. Dr. Olav Hohmeyer

Increased efficiency may reduce power demand by about 20%

Prof. Dr. Olav Hohmeyer

In the business-as-usual case coal is supposed to cover about 60% of the future power demand

Source: IES and MKE 2017

Prof. Dr. Olav Hohmeyer

A mix of solar, wind, biomass and hydropower can supply 100% RE

Source: IES and MKE 2017

Prof. Dr. Olav Hohmeyer

A mix of solar, wind, biomass and hydropower can supply 100% RE

Table 16	Myanmar Generation by Fuel (SES, GWh)					
Generation	2010	2015	2020	2030	2040	2050
Coal	0	0	0	0	0	0
CCS	0	0	0	0	0	0
Diesel	30	0	0	0	0	0
Fuel Oil	0	0	0	0	0	0
Gas	1,678	5,233	6,502	6,174	2,923	0
Nuclear	0	0	0	0	0	0
Hydro	5,263	8,099	15,308	23,125	20,402	23,362
Onshore Wind	0	0	2,435	10,980	22,981	27,800
Offshore Wind	0	0	0	0	0	0
Biomass	0	0	1,441	8,445	22,522	27,187
Biogas	0	0	0	0	0	0
Solar	0	0	3,836	17,501	38,141	53,640
CSP	0	0	0	3,381	10,525	21,085
Battery	0	0	0	0	0	0
Hydro ROR	0	0	0	4,415	5,925	7,358
Geothermal	0	0	0	333	1,651	2,304
Pump Storage	0	0	0	0	0	317
Ocean	0	0	0	0	132	526
Off-grid	0	2	112	1,268	725	716

Source: IES and MKE 2017

Prof. Dr. Olav Hohmeyer

Using Critical Thinking to Imagine Sustainable Energy Futures

Figure 88 Myanmar LCOE for Generation

Prof. Dr. Olav Hohmeyer

Using Critical Thinking to Imagine Sustainable Energy Futures

Conclusions

- Myanmar can shift to 100% RE without higher costs
- Myanmar will benefit by higher jobs and less pollution
- International climate money can pave the way
- A 100% RE strategy will help mitigate global climate change
- A 100% RE strategy can avoid substantial future payments for CO₂ emission charges
- We know how to do it and how to get the funding and financing
- 100% RE power supply may be an interesting option for Myanmar

Thank you very much for your attention

Thank you very much for your attention